Rabies Virus: A Review of Pathogenesis, Diagnosis, and Prevention
DOI:
https://doi.org/10.59675/V324Keywords:
Rabies virus, Neurotropism, Immune evasion, Rabies diagnosis, Dog-mediated rabiesAbstract
Rabies virus is considered as one of the deadliest known infectious agents in medical science with a case-fatality rate of nearly 100% once clinical symptoms take place. Although there are good vaccines and post-exposure prophylaxis, the disease claims between 59,000 human lives each year and the majority of these are in low- and middle-income countries in Africa and Asia. Recent developments in molecular virology have clarified the key factors of viral neuroinvasion, immune evasion, as well as host-pathogen interaction. At the same time, there have been new technologies in diagnostic technologies such as point-of-care molecular assays and rapid field-deployable systems that have increased surveillance in resource-constrained environments. Global prevention efforts have developed by incorporating One-Health approaches which focus on cross-sectoral integration between human health, veterinary services and the environmental sector. This overall discussion summarizes the existing knowledge of the pathogenesis of rabies virus, with a particular focus on molecular pathways of neurotropism and immune subversion, current diagnostic methods with respect to sensitivity and field use, and prevention and control measures such as mass immunization of dogs, simplified pre-exposure and post-exposure prophylaxis, and new vaccine systems. The continuous obstacles to international extermination are addressed, such as infrastructural obstacles, economic limitations, sluggish care-seeking habits, and surveillance systems deficits. To realize the goal of the World Health Organization to reduce death by 2030 due to dogs as the primary causative agent of human rabies, continued investment on animal vaccination, increased access to biologics, the implementation of rapid diagnostics, and the enhancement of intersectoral coordination in One-Health models is mandatory.
References
Hampson K, Coudeville L, Lembo T, et al. Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis. 2015;9(4): e0003786.
World Health Organization. Rabies fact sheet. Geneva: WHO; 2023.
Fooks AR, Banyard AC, Horton DL, et al. Current status of rabies and prospects for elimination. Lancet. 2014;384(9951):1389-99.
Willoughby RE Jr, Tieves KS, Hoffman GM, et al. Survival after treatment of rabies with induction of coma. N Engl J Med. 2005;352(24):2508-14.
Jackson AC. Pathogenesis of rabies. In: Jackson AC, editor. Rabies: Scientific basis of the disease and its management. 3rd ed. Oxford: Academic Press; 2013. p. 299-349.
Wallace RM, Gilbert A, Slate D, et al. Right dog, right place, right time: opportunities to improve dog rabies control. Vaccine. 2019;37(Suppl 1):A32-8.
Cleaveland S, Lankester F, Townsend S, et al. Rabies control and elimination: a test case for One Health. Vet Rec. 2014;175(8):188-93.
Fu ZF, Jackson AC. Neuronal dysfunction and death in rabies virus infection. J Neurovirol. 2005;11(1):101-6.
Pieracci EG, Pearson CM, Wallace RM, et al. Vital signs: trends in human rabies deaths and exposures—United States, 1938-2018. MMWR Morb Mortal Wkly Rep. 2019;68(23):524-8.
Schnell MJ, McGettigan JP, Wirblich C, et al. The cell biology of rabies: using stealth to reach the brain. Nat Rev Microbiol. 2010;8(1):51-61.
Tordo N, Poch O, Ermine A, et al. Primary structure of leader RNA and nucleoprotein genes of the rabies genome: segmented homology with VSV. Nucleic Acids Res. 1986;14(6):2671-83.
Masatani T, Ito N, Shimizu K, et al. Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response. J Virol. 2010;84(8):4002-12.
Lembo T, Niezgoda M, Velasco-Villa A, et al. Evaluation of a direct, rapid immunohistochemical test for rabies diagnosis. Emerg Infect Dis. 2006;12(2):310-3.
Dacheux L, Reynes JM, Buchy P, et al. A reliable diagnosis of human rabies based on analysis of skin biopsy specimens. Clin Infect Dis. 2008;47(11):1410-7.
Sadeuh-Mba SA, Momo JB, Besong L, et al. Molecular epidemiology of rabies virus in the Central African Republic. PLoS Negl Trop Dis. 2021;15(10):e0009854.
Smith TG, Millien M, Vos A, et al. Evaluation of immune responses in dogs to oral rabies vaccine under field conditions. Vaccine. 2019;37(33):4743-9.
Dietzschold B, Wunner WH, Wiktor TJ, et al. Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci U S A. 1983;80(1):70-4.
World Health Organization. WHO Expert Consultation on Rabies: third report. WHO Technical Report Series No. 1012. Geneva: WHO; 2018.
Gogtay NJ, Munshi R, Ashwath Narayana DH, et al. Comparison of a novel human rabies monoclonal antibody to human rabies immunoglobulin for postexposure prophylaxis. Clin Infect Dis. 2018;66(3):387-95.
World Health Organization. Rabies vaccines: WHO position paper—April 2018. Wkly Epidemiol Rec. 2018;93(16):201-20.
Li Y, Zhao L, Liu F, et al. Advances in rabies vaccines and technologies. Vaccines (Basel). 2021;9(2):141.
Cleaveland S, Beyer H, Hampson K, et al. The changing landscape of rabies epidemiology and control. Onderstepoort J Vet Res. 2014;81(2):E1-8.
Talbi C, Lemey P, Suchard MA, et al. Phylodynamics and human-mediated dispersal of a zoonotic virus. PLoS Pathog. 2010;6(10): e1001166.
Gluska S, Zahavi EE, Chein M, et al. Rabies virus hijacks and accelerates the p75NTR retrograde axonal transport machinery. PLoS Pathog. 2014;10(8): e1004348.
Hemachudha T, Ugolini G, Wacharapluesadee S, et al. Human rabies: neuropathogenesis, diagnosis, and management. Lancet Neurol. 2013;12(5):498-513.
Ugolini G. Rabies virus as a transneuronal tracer of neuronal connections. Adv Virus Res. 2011; 79:165-202.
Jackson AC. Human rabies: a 2016 update. Curr Infect Dis Rep. 2016;18(11):38.
Ceccaldi PE, Fillion MP, Ermine A, et al. Rabies virus selectively alters 5-HT1 receptor subtypes in rat brain. Eur J Pharmacol. 1993;245(2):129-38.
Hemachudha T, Laothamatas J, Rupprecht CE. Human rabies: a disease of complex neuropathogenetic mechanisms and diagnostic challenges. Lancet Neurol. 2002;1(2):101-9.
Brzózka K, Finke S, Conzelmann KK. Inhibition of interferon signaling by rabies virus phosphoprotein P. J Virol. 2006;80(6):2675-83.
Oksayan S, Nikolic J, David CT, et al. Identification of a role for nucleolin in rabies virus infection. J Virol. 2015;89(3):1939-43.
Roy A, Hooper DC. Lethal silver-haired bat rabies virus infection can be prevented by opening the blood–brain barrier. J Virol. 2007;81(15):7993-8.
Jackson AC, Ye H, Phelan CC, et al. Extraneural organ involvement in human rabies. Lab Invest. 1999;79(8):945-51.
Crepin P, Audry L, Rotivel Y, et al. Intravitam diagnosis of human rabies by PCR using saliva and cerebrospinal fluid. J Clin Microbiol. 1998;36(4):1117-21.
Warrell MJ, Warrell DA. Rabies and other lyssavirus diseases. Lancet. 2004;363(9413):959-69.
Malik YS, Singh RK, Dhama K, editors. Animal-origin viral zoonoses. Singapore: Springer; 2020 Sep 23.
Willoughby RE Jr, Tieves KS, Hoffman GM, et al. Rabies virus pathogenesis and clinical management: are we making progress? Mayo Clin Proc. 2011;86(5):491-9.
Jackson AC, Warrell MJ, Rupprecht CE, et al. Management of rabies in humans. Clin Infect Dis. 2003;36(1):60-3.
Wadhwa A, Wilkins K, Gao J, et al. A pan-lyssavirus TaqMan real-time RT-PCR assay. PLoS Negl Trop Dis. 2017;11(1): e0005258.
Seetahal JFR, Vokaty A, Vigilato MAN, et al. Rabies in the Caribbean: a multidomain perspective. Trop Med Infect Dis. 2018;3(3):92.
Eggerbauer E, Troupin C, Passior K, et al. The European bat lyssavirus type 2 in Europe. Dev Biol (Basel). 2017; 131:21-32.
Dean DJ, Baer GM, Thompson WR. Studies on the local treatment of rabies-infected wounds. Bull World Health Organ. 1963;28(4):477-86.
Wilde H, Glueck R, Khawplod P, et al. Efficacy of a new albumin-free human rabies immune globulin. J Travel Med. 2009;16(1):40-2.
Bharti OK, Madhusudana SN, Gaunta PL, et al. Local infiltration of rabies immunoglobulins. Hum Vaccin Immunother. 2016;12(3):837-42.
Sudarshan MK, Narayana DHA. One-week intradermal rabies vaccine regimen. Bull World Health Organ. 2012;90(7):558-9.
Tarantola A, Blanchi S, Cappelle J, et al. Rabies postexposure prophylaxis noncompletion after dog bites. Am J Epidemiol. 2018;187(2):306-15.
Rupprecht CE, Briggs D, Brown CM, et al. Reduced 4-dose rabies vaccine schedule. MMWR Recomm Rep. 2010;59(RR-2):1-9.
Ertl HCJ. New rabies vaccines for use in humans. Vaccines (Basel). 2019;7(2):54.
Slate D, Algeo TP, Nelson KM, et al. Oral rabies vaccination in North America. Dev Biol (Basel). 2009; 131:397-408.
Coleman PG, Dye C. Immunization coverage required to prevent outbreaks of dog rabies. Vaccine. 1996;14(3):185-6.
Mindekem R, Lechenne MS, Naissengar KS, et al. Cost efficiency of rabies prevention strategies. Front Vet Sci. 2017; 4:38.
Gibson AD, Ohal P, Shervell K, et al. Vaccinate-assess-move method for canine rabies vaccination. BMC Infect Dis. 2015; 15:589.
Undurraga EA, Meltzer MI, Tran CH, et al. Cost-effectiveness of integrated bite case management. Am J Trop Med Hyg. 2017;96(6):1307-17.
Vigilato MA, Clavijo A, Knobl T, et al. Progress toward eliminating canine rabies. Philos Trans R Soc Lond B Biol Sci. 2013;368(1623):20120143.
Hampson K, Cleaveland S, Briggs D. Cost-effective rabies postexposure vaccination strategies. PLoS Negl Trop Dis. 2011;5(3):e982.
Knobel DL, Cleaveland S, Coleman PG, et al. Re-evaluating the burden of rabies in Africa and Asia. Bull World Health Organ. 2005;83(5):360-8.
Sambo M, Lembo T, Cleaveland S, et al. Knowledge, attitudes and practices on rabies in Tanzania. PLoS Negl Trop Dis. 2014;8(12):e3310.
Tarantola A, Ly S, Chan M, et al. Abridged intradermal rabies postexposure prophylaxis. Vaccine. 2019;37(31):4200-5.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Academic International Journal of Veterinary Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.

