Synthesis and Cytotoxicity Assessment of Curcumin-Derived Nickel Chloride Nanoparticles for ID8 mouse ovarian epithelial cancer cells
DOI:
https://doi.org/10.59675/V322Keywords:
Nickel chloride; Curcumin; MTT; AnticancerAbstract
Background: In 2020, the US had approximately 1.8 million new cancer cases and over 606,000 cancer-related deaths. Between 1991 and 2017, overall cancer death rates decreased by 29%. This represents 2.9 million fewer cancer deaths than projected at high prevalence. Traditional tumor treatments like chemotherapy, radiation, and surgery are popular. Chemotherapy fights cancer but has major negative effects. Surgically excised tumors may reappear and resist radiotherapy. Aims: The objective of the current work was to evaluate the possible anticancer properties of nickel chloride nanoparticles synthesized from curcumin. Methods: 250 grams of curcumin powder and 500 ml of ethanol were combined. After mixing for an hour, we refrigerated the mixture at 4°C for 24 hours. The mixture was centrifuged for 10 minutes at 8,000 rpm. The supernatant was quickly collected and refrigerated for the next step. Next, we cooked 200 ML of the previous preparation on a 60 °C hotplate with 20 g of nickel chloride for 1 hour. Nano precipitates with NaOH. Next, we quickly centrifuged the mixture to extract nanoparticles. After two rinses with 5 ml of deionized water. Results: The image presents an X-ray Diffraction (XRD) spectrum utilized for identifying the crystalline structure and phase of a material—the pronounced and well-defined peaks in the spectrum, especially the most powerful peak at 2θ=43.310°. The NiO nanoparticles demonstrated the highest cytotoxic effects at 24 hours. Discussion: Elevated intracellular [Ni] levels result in decreased activity of Cu-dependent enzymes and transcription factors. Conclusions: Curcumin powder can be used to synthesize NiO nanospheres ecologically. Synthesized NiO nanoparticles are monoclinic and spherical, having a particle size of 20 nanometers. The synthesized nanoparticles are anticancer and have few adverse effects.
References
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2018 Nov;68(6):394-424. doi:10.3322/caac.21492[google scholar]
Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández Á. Assessment of the evolution of cancer treatment therapies. Cancers. 2011 Aug 12;3(3):3279-330.doi: 10.3390/cancers3033279[google scholar]
D’Alterio C, Scala S, Sozzi G, Roz L, Bertolini G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Seminars in Cancer Biology. 2020 Feb;60:351 361. DOI: 10.1016/j.semcancer.2019.08.019[google scholar]
Greenwell M, Rahman PKSM. Medicinal plants: their use in anticancer treatment. International Journal of Pharmaceutical Sciences and Research. 2015 Oct;6(10):4103 12.• DOI: 10.13040/IJPSR.0975-8232.6(10).4103-12[google scholar]
Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegazy M EF, et al. Marine natural products: A source of novel anticancer drugs. Marine Drugs. 2019 Aug 23;17(9):491.
• DOI: 10.3390/md17090491[google scholar]
Cragg GM, Kingston DG, Newman DJ. Anticancer agents from natural products. CRC press; 2005 Jun 13.[google scholar]
Cristiano MC, Froiio F, Spaccapelo R, Mancuso A, Nisticò SP, Udongo BP, Fresta M, Paolino D. Sulforaphane loaded ultradeformable vesicles as a potential natural nanomedicine for the treatment of skin cancer diseases. Pharmaceutics. 2019 Dec 19;12(1):6.
• DOI: 10.3390/pharmaceutics12010006[google scholar]
Wolf CPJG, Rachow T, Ernst T, Hochhaus A, Zomorodbakhsch B, Foller S, Rengsberger M, Hartmann M, Hübner J. “Interactions in cancer treatment considering cancer therapy, concomitant medications, food, herbal medicine and other supplements.” Journal of Cancer Research and Clinical Oncology. 2022 Feb;148(2):461–473. DOI: 10.1007/s00432-021-03625-3[google scholar]
Khodavirdipour A, Zarean R, Safaralizadeh R. “Evaluation of the anti cancer effect of Syzygium cumini ethanolic extract on HT 29 colorectal cell line.” Journal of Gastrointestinal Cancer. 2021 Jun;52(2):575–581.DOI: 10.1007/s12029-020-00439-3[google scholar]
Ahmad A, Sakr WA, Rahman KWM. “Novel targets for detection of cancer and their modulation by chemopreventive natural compounds.” Frontiers in Bioscience–Elite. 2012 Jan;4(1):410–425.
DOI: 10.2741/e388[google scholar]
Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, Mohamed HR. “The multifaceted role of curcumin in advanced nanocurcumin form in the treatment and management of chronic disorders.” Molecules. 2021 Nov 24;26(23):7109.
DOI: 10.3390/molecules26237109[google scholar]
Mansouri K, Rasoulpoor S, Daneshkhah A, Abolfathi S, Salari N, Mohammadi M, Rasoulpoor S, Shabani S. “Clinical effects of curcumin in enhancing cancer therapy: A systematic review.” BMC Cancer. 2020 Dec;20:791. DOI: 10.1186/s12885-020-07256-8[google scholar]
Bachmeier BE, Killian PH, Melchart D. The role of curcumin in prevention and management of metastatic disease. International journal of molecular sciences. 2018 Jun 9;19(6):1716. DOI: 10.3390/ijms19061716[google scholar]
Islam MR, Islam F, Nafady MH, Akter M, Mitra S, Das R, Urmee H, Shohag S, Akter A, Chidambaram K, Alhumaydhi FA.Natural small molecules in Mouse ovarian epithelial cancer treatment: understandings from a therapeutic viewpoint. Molecules. 2022 Mar 27;27(7):2165. DOI: 10.3390/molecules27072165[google scholar]
Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research. 2019 Nov 21;23(1):20. DOI: 10.1186/s40824-019-0166-x[google scholar]
Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Advanced Pharmaceutical Bulletin. 2020 Feb 18;10(2):150–165. DOI: 10.34172/apb.2020.021[google scholar]
Yallapu MM, Jaggi M, Chauhan SC.β Cyclodextrin curcumin self assembly enhances curcumin delivery in prostate cancer cells. Colloids and Surfaces B: Biointerfaces. 2010 Aug 1;79(1):113–125.
DOI: 10.1016/j.colsurfb.2010.03.039[google scholar]
Rabiee N, Deljoo S, Rabiee M.Curcumin hybrid nanoparticles in drug delivery system. Asian Journal of Nanosci. Mater. 2018;2: 66–91. DOI: 10.26655/AJNANOMAT.2019.1.5[google scholar]
(26Bagheri M, Fens MH, Kleijn TG, Capomaccio RB, Mehn D, Krawczyk PM, Scutigliani EM, Gurinov A, Baldus M, van Kronenburg NC, Kok RJ. In vitro and in vivo studies on HPMA‑based polymeric micelles loaded with curcumin. Molecular Pharmaceutics. 2021 Jan 19;18(3):1247–1263.DOI: 10.1021/acs.molpharmaceut.0c01114[google scholar]
Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MR “Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9‑fold when compared to curcumin administered with piperine as absorption enhancer.” European Journal of Pharmaceutical Sciences. 2009 Jun 28;37(3‑4):223–230. DOI: 10.1016/j.ejps.2009.02.019[google scholar]
Jazayeri-Tehrani SA, Rezayat SM, Mansouri S, Qorbani M, Alavian SM, Daneshi-Maskooni M, Hosseinzadeh-Attar MJ. Nano-curcumin improves glucose indices, lipids, inflammation, and Nesfatin in overweight and obese patients with non-alcoholic fatty liver disease (NAFLD): a double-blind randomized placebo-controlled clinical trial. Nutrition & metabolism. 2019 Dec;16:1-3. DOI: 10.1186/s12986-019-0331-1[google scholar]
Wang Y, Luo J, Li SY. Nano-curcumin simultaneously protects the blood–brain barrier and reduces M1 microglial activation during cerebral ischemia–reperfusion injury. ACS applied materials & interfaces. 2019 Jan 8;11(4):3763-70. DOI: 10.1021/acsami.8b20594[google scholar]
Liu Y, Liu Q, Liu Y, Ju F, Ma Q, He Q. In vivo evaluation of enhanced drug carrier efficiency and cardiac anti-hypertrophy therapeutic potential of nano-curcumin encapsulated photo-plasmonic nanoparticles combined polymerized nano-vesicles: A novel strategy. Journal of Photochemistry and Photobiology B: Biology. 2019 Oct 1;199:111619.[google scholar]
Wu B, Yao H, Wang S, Xu R. DAPK1 modulates a curcumin-induced G2/M arrest and apoptosis by regulating STAT3, NF-κB, and caspase-3 activation. Biochemical and biophysical research communications. 2013 Apr 26;434(1):75-80. DOI: 10.1016/j.bbrc.2013.03.063[google scholar]
Hafez Ghoran S, Calcaterra A, Abbasi M, Taktaz F, Nieselt K, Babaei E. Curcumin-based nanoformulations: A promising adjuvant towards cancer treatment. Molecules. 2022 Aug 16;27(16):5236. DOI: 10.3390/molecules27165236[google scholar]
Velsankar K, Parvathy G, Mohandoss S, Sudhahar S. Effect of green synthesized ZnO nanoparticles using Paspalum scrobiculatum grains extract in biological applications. Microsc Res Tech. 2022 Sep;85(9):3069–3094. doi:10.1002/jemt.24167[google scholar]
Vijayakumar N, Bhuvaneshwari VK, Ayyadurai GK, Jayaprakash R, Gopinath K, Nicoletti M, Green synthesis of zinc oxide nanoparticles using Anoectochilus elatus, and their biomedical applications. Saudi J Biol Sci. 2022 Apr;29(4):2270–2279. doi:10.1016/j.sjbs.2021.11.065[google scholar]
Liu, X., Shan, K., Shao, X., Shi, X., He, Y., Liu, Z., Jacob, J.A. and Deng, L., 2021. Nanotoxic effects of silver nanoparticles on normal HEK-293 cells in comparison to cancerous HeLa cell line. International journal of nanomedicine, pp.753-761. DOI: 10.2147/IJN.S289008.[google scholar]
Xie, W. and Xu, Z., 2024. (Nano) biotechnological approaches in the treatment of cervical cancer: integration of engineering and biology. Frontiers in immunology, 15, p.1461894. DOI: 10.3389/fimmu.2024.1461894[google scholar]
Hegde M, Kumar A, Girisa S, Aswani BS, Vishwa R, Sethi G, Kunnumakkara AB. Nanoformulations of curcumin: An alliance for effective cancer therapeutics. Food Bioscience. 2023 Dec 1;56:103095. DOI: 10.1016/j.fbio.2023.103095[google scholar]
Hosseini S, Chamani J, Hadipanah MR, Ebadpour N, Hojjati AS, Mohammadzadeh MH, RahimiHR. Nano-curcumin’s suppression of Mouse ovarian epithelial cancer cells (MCF7) through the inhibition of cyclinD1 expression. Mouse ovarian epithelial cancer: targets and therapy. 2019 Mar 13:137-42. DOI: 10.2147/BCTT.S189980[google scholar]
Zhang J, Sun J, Li C, Qiao H, Hussain Z. Functionalization of curcumin nanomedicines: a recent promising adaptation to maximize pharmacokinetic profile, specific cell internalization and anticancer efficacy against Mouse ovarian epithelial cancer. Journal of Nanobiotechnology. 2023 Mar 25;21(1):106. DOI: 10.1186/s12951-023-01854-x[google scholar]
Frouhar E, Adibifar A, Salimi M, Karami Z, Shadmani N, Rostamizadeh K. Novel pH-responsive alginate-stabilized curcumin–selenium–ZIF-8 nanocomposites for synergistic Mouse ovarian epithelial cancer therapy. Journal of Drug Targeting. 2024 Apr 20;32(4):444-55. DOI: 10.2147/IJN.S200847[google scholar]
Zarenezhad E, Abdulabbas HT, Marzi M, Ghazy E, Ekrahi M, Pezeshki B, Ghasemian A, Moawad AA. Nickel nanoparticles: applications and antimicrobial role against methicillin-resistant Staphylococcus aureus infections. Antibiotics. 2022 Sep 7;11(9):1208.[google scholar]
Kiriş HT, Taşkaya Ç, Bahadır A, Göker E. Effects of nickel chloride on cell morphology and migration in non-small cell lung cancer cell lines. Turkish Medical Student Journal. 2023 Oct 31. [Google Scholar]
Berhe MG, Gebreslassie YT. Biomedical applications of biosynthesized nickel oxide nanoparticles. International journal of nanomedicine. 2023 Dec 31:4229-51.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Academic International Journal of Veterinary Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
 
						
